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S U M M A R Y  

A method is proposed for defining a probability distribution on an ensemble of protein conformations 
from a 2D NOE spectrum, while at the same time back-calculating the experimental spectrum from the 
ensemble. This enables one to assess the relative quality and significance of the conformations, and to test the 
consistency of the ensemble as a whole with the experimental spectrum. The method eliminates the need to 
integrate the cross-peak intensities and is surprisingly insensitive to random noise in the spectrum. In this 
communication, these advantages are demonstrated by applying the method to simulated data, for which the 
correct result is already known. 

The determination of biological conformation f rom N M R  data is generally accomplished by 

distance geometry algorithms (see Wagner  et al., 1991 and references therein). As a rule, these 
computat ions yield an ensemble of  conformations that are consistent with the data. With suffi- 
ciently complete and precise data, the distribution of conformations in these ensembles appears 
to be correlated with the actual distribution of conformations in solution (Hyberts et al., 1992). 
Unfortunately, this correlation is a weak one, and hence the conformations are generally regard- 
ed as being equally likely fits to the data. Most  attempts at refinement have at tempted to identify 

a single conformation as being ' the '  solution conformation,  even though some conformational  

heterogeneity is inevitable in solution. 
Several at tempts to fit multiple conformations to N M R  data have been made (Kessler et al., 

1988; Briischweiler et al., 1991; Kim et al., 1991). Most  recently, Landis and Allured (1991) have 
taken a set of  reference conformations and assigned statistical 'weights' {wi} to the conformations 
such that w, -> 0, Z, w, = 1 and the mean square difference between the observed and the weighted 
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average NOE cross-peak intensities is minimal. In principle, these weights constitute a maximum 
likelihood estimate of the relative populations of the reference conformations. 

We have explored a similar approach, but with the primary goal of estimating the relative 
quality and subjective probability of the conformations found in distance geometry ensembles. 
Such a measure of 'goodness' is theoretically better justified and hence more meaningful than 
difference measures such as 'R-factors'. Unfortunately, the strong correlations between the NOE 
cross-peak intensities in the various conformations of the ensemble renders the least-squares 
equations extremely ill-conditioned, so that small changes in the observed intensities (on the order 
of the combined expected signal-to-noise and peak integration errors) can completely change the 
solution - most of the weights in fact come out equal to zero. By means of a somewhat ad hoc 
clustering approach, Landis and Allured (1991) were evidently able to overcome this problem. 
We have, however, found a more rigorous approach that also works well. 

In our approach, we treat the individual 'pixels' in an experimental 2D proton NOESY spec- 
trum as observations, and fit the spectra computed from the conformations in the distance 
geometry ensemble to them directly. In this way, the ratio of the number of equations to 
unknowns can be dramatically increased while at the same time entirely eliminating the errors due 
to integration of the cross peaks to obtain their intensities. Thus the 'probabilities', p = (Pl) of the 
conformations in the ensemble are estimated by solving the following least-squares problem: 

N 

min(]] hp-zll 2) subject to p - 0 and ~ Pl = 1, 
1 = I  

where N is the number of conformations, the ij-th element alj in the matrix A is the value of the 
i-th pixel in the spectrum of the j-th conformation, and the i-th element zl of the vector z is the 
value of the corresponding pixel in the experimental spectrum. This problem can be readily solved 
by the methods described by Lawson and Hanson (1974). 

Because the scale used to measure pixel intensities is arbitrary, we rescale the vector z by ~ -> 0 
to get the best possible fit between the observed and calculated spectra. This is easily done by 
solving the following modified least-squares problem: 

N 

min([[ Ap-az[[ 2) subject to p,(z -> 0 and ~ Pl = 1, 
1 = 1  

(in effect, making -z  a column of A and fitting the corresponding homogeneous linear system). 
Although a more sophisticated scaling procedure may be advisable (Nibedita et al., 1992), for the 
present we prefer to keep our approach as simple as possible. 

To calculate the least-squares matrix A itself, we first calculate the relaxation matrix R of each 
conformation in the distance geometry ensemble by standard methods (see e.g. Borgias et al., 
1991), treating methyl and phenyl group rotations by jump models. The matrix of NOE (cross)- 
peak intensities I at the chosen mixing time Zm is then obtained from - %  R by matrix exponenti- 
ation, using an efficient new algorithm (Najfeld, I and Havel, T.F., unpublished results). Then the 
digital 2D spectra are calculated with each peak scaled so that its intensity is equal to the intensity 
of the corresponding entry in I, and the matrix A is built from the pixels therein. In order to 
reduce the size of the matrix A, only those pixels are included in A for which the intensity (of the 
pixel) is above a given cutoff value in at least one of the calculated spectra. 

The method by which we actually calculate the 2D NOESY spectrum is outside the scope of 
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this paper (Wagner, G., Beeson, N. and Hyberts, S., personal communication); nonetheless, we 
provide the following brief account for the sake of completeness. Assuming that the chemical 
shifts of the protons have been assigned, the individual cross peaks are split into multiplets 
according to the J-coupling constants implied by the Karplus relation, using the empirical rela- 
tion given by Hyberts (1992). Although basic theory implies a Lorentzian line shape, we have 
found that a better fit can be obtained as a rule by using a circular 2D Gaussian model. Thus each 
peak of each multiplet is given a line shape of the form exp(-((vl-v~) 2 + (D2-D~)z)/(2(y2)), where 
Vl, v2 are the two frequency variables, v~,v~ are the frequencies (chemical shifts) of the two 
protons involved, and ~ is the peak width. We call the package of programs we have written 
which implements all of the above calculations SESAME, meaning Structure Evaluation by 
Simulation And Minimization of Error. 

To test the robustness of our estimation procedure in the presence of signal-to-noise error, we 
generated a set of 25 conformations for the 58-residue protein BPTI by distance geometry meth- 
ods, using a set of previously published simulated NMR distance constraints (denoted as B-I in 
Havel, 1991). The rmsd among these conformations averaged 1.76 A (0.94 A among the a- 
carbons alone). Thirty 'experimental' spectra were simulated from the NOESY spectra calculated 
for each of these 25 conformations by choosing 30 random 'probability' vectors ~ and computing 
the corresponding average spectra ~ = Ap for each, where A is the least-squares matrix constructed 
from these 25 spectra as described above. The size of these spectra was 1024 x 1024, spanning the 
range of - 1 through 11 ppm, and they were calculated using a correlation time of 2 ns, a mixing 
time of 50 ms, and a peak width of 10 Hz at a spectrometer frequency of 500 MHz. The peaks 
were assigned their published chemical shifts (Berndt et al., 1992) where available; missing reso- 
nances were omitted from the spectra. These omissions, as well as all the other approximations 
made in this paper, will not affect its main conclusions because we are evaluating our procedure 
on simulated data, and the simulated and calculated spectra are based on the same approxima- 
tions. 

In order to simulate the noise that would be expected in an actual NOESY spectrum, we simply 
added random numbers to the elements of ~, where each random number had the same normal 
distribution. The variance of these random numbers was set to be equal to the square of the 
calculated intensity at the maximum of a cross peak between two single protons at distances 
ranging from 2.2 to 6.0 ~ (we call this distance the noise level in 'effective Angstroms'). The cutoff 
used to compute the matrix A was taken as the value of a pixel at 5o for a cross peak between two 
single protons at 6.0 A, which eliminated approximately 77% of the pixels, leaving a total of about 
240 000 observations to fit. This should be compared to the about 1000 cross peaks that could be 
observed in the experimental spectrum. In Figs. 1 through 3, we plot the average for all 30 

- 9 - 2  simulated spectra of the 'R-factor' El(Zi-21)2/Z122, the relative deviation Zl(Pl--Pl)-/Z,P, and the 
number of zero probabilities p~ = 0 versus the noise level in effective Angstroms. It should be 
noted that the calculated probabilities showed very little correlation with the R-factors, even in 
the presence of no noise. 

As can readily be seen, with a realistic noise level of 4.0 effective Angstroms we are able to 
reproduce our target probabilities to within 1.9 + 0.4% relative precision. This shows that by 
basing our fit on the pixels instead of the integrated peak intensities, we obtain enough observa- 
tions to be able to distinguish and accurately rank the conformations in a typical distance 
geometry ensemble - assuming that our spectral simulation is accurate and that only random 
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Fig. 1. The average for 30 simulated spectra plus noise of the 'R-factor'  difference between the simulated and calculated 
spectra versus the simulated noise level m effective Angstroms (see text). The error bars cannot be shown because they are 
too small. 

errors are present in the data. Of course, neither of these assumptions is entirely valid. For 
example, in order to render these calculations computationally tractable we have assumed that a 
finite distance geometry ensemble contains examples of all conformations present in significant 
concentration, that these conformations are sufficiently rigid to enable their spectral density 
functions to be approximated using a single correlation time, and that the line shapes in their 
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Fig. 2. The average for 30 simulated spectra plus noise of  the relative deviation in percent between the assumed ~ and 
calculated p probabilities versus the simulated noise level in effective Angstroms (see text). 
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Fig. 3. The average for 30 simulated spectra plus noise of  the number of calculated probabilities p, equal to zero versus the 
simulated noise level in effective Angstroms (see text). 

spectra can be modeled by a uniform Gaussian. In addition, inherent in our averaging procedure 
is the assumption that the conformations in the ensemble are all sufficiently different that they 
interchange slowly on the T1 time scale. Finally, the data themselves inevitably contain other 
systematic errors due to inaccurate phasing, chemical shift differences, window functions, and 
water suppression. 

We point out that these problems are also present in earlier work wherein the fit was based on 
the integrated peak intensities (Landis and Allured, 1991). In contrast, the approach presented in 
this paper bypasses the tedious and error-prone process of peak integration entirely: it should not 
even be seriously affected by peak overlap (once the assignment problem has been solved). In 
addition, our approach makes a much larger number of observations available, thereby greatly 
improving the accuracy of the fit in the presence of random errors. Indeed, as we pointed out 
earlier in this paper, the seemingly straightforward approach of least-squares fitting the integrat- 
ed cross-peak intensities directly is seriously affected by the noise levels present in typical experi- 
ments. 

We further point out that, if one were to similarly base the fit on the spectra rather than the 
integrated cross-peak intensities in the usual sorts of NOE refinements, wherein the coordinates 
of a single conformation are modified to fit the calculated intensities to the data (see e.g. Case and 
Yip, 1989), then one should be able to obtain these same advantages in those refinements as well. 
In contrast to those refinements, however, the approach we have taken here enables one to 
back-calculate the data from an entire ensemble of conformations while at the same time defining 
a probability distribution on the ensemble which should be correlated with the actual solution 
populations. At the very least, it will certainly be an improvement over the 'equiprobability' 
assumption that is generally made in distance geometry calculations, and this probability distri- 
bution also provides an objective criterion by which one can rank and classify the members of 
distance geometry ensembles. 
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Of course, our method could be combined with the refinement of the individual conformations 

in the ensemble to obtain an even more accurate back-calculation, and we are presently in the 

process of  evaluating such an approach with experimental data (Yang, J., Hyberts, S. and Havel, 
T.F., unpublished results). The fact that our method is insensitive to random errors should also 

make it possible to explore the significance of  the above-mentioned systematic errors, and hence 

to develop better methods of  dealing with them. 
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